Curated Optogenetic Publication Database

Search precisely and efficiently by using the advantage of the hand-assigned publication tags that allow you to search for papers involving a specific trait, e.g. a particular optogenetic switch or a host organism.

Showing 1 - 3 of 3 results
1.

Rationally improving LOV domain-based photoswitches.

blue AsLOV2 in vitro
Nat Methods, 20 Jun 2010 DOI: 10.1038/nmeth.1473 Link to full text
Abstract: Genetically encoded protein photosensors are promising tools for engineering optical control of cellular behavior; we are only beginning to understand how to couple these light detectors to effectors of choice. Here we report a method that increases the dynamic range of an artificial photoswitch based on the LOV2 domain of Avena sativa phototropin 1 (AsLOV2). This approach can potentially be used to improve many AsLOV2-based photoswitches.
2.

Genetically encoded photoswitching of actin assembly through the Cdc42-WASP-Arp2/3 complex pathway.

red PhyB/PIF3 in vitro
Proc Natl Acad Sci USA, 26 Aug 2008 DOI: 10.1073/pnas.0801232105 Link to full text
Abstract: General methods to engineer genetically encoded, reversible, light-mediated control over protein function would be useful in many areas of biomedical research and technology. We describe a system that yields such photo-control over actin assembly. We fused the Rho family GTPase Cdc42 in its GDP-bound form to the photosensory domain of phytochrome B (PhyB) and fused the Cdc42 effector, the Wiskott-Aldrich Syndrome Protein (WASP), to the light-dependent PhyB-binding domain of phytochrome interacting factor 3 (Pif3). Upon red light illumination, the fusion proteins bind each other, activating WASP, and consequently stimulating actin assembly by the WASP target, the Arp2/3 complex. Binding and WASP activation are reversed by far-red illumination. Our approach, in which the biochemical specificity of the nucleotide switch in Cdc42 is overridden by the light-dependent PhyB-Pif3 interaction, should be generally applicable to other GTPase-effector pairs.
3.

Estimation of the available free energy in a LOV2-J alpha photoswitch.

blue LOV domains Background
Nat Chem Biol, 6 Jul 2008 DOI: 10.1038/nchembio.99 Link to full text
Abstract: Protein photosensors are versatile tools for studying ligand-regulated allostery and signaling. Fundamental to these processes is the amount of energy that can be provided by a photosensor to control downstream signaling events. Such regulation is exemplified by the phototropins--plant serine/threonine kinases that are activated by blue light via conserved LOV (light, oxygen and voltage) domains. The core photosensor of oat phototropin 1 is a LOV domain that interacts in a light-dependent fashion with an adjacent alpha-helix (J alpha) to control kinase activity. We used solution NMR measurements to quantify the free energy of the LOV domain-J alpha-helix binding equilibrium in the dark and lit states. These data indicate that light shifts this equilibrium by approximately 3.8 kcal mol(-1), thus quantifying the energy available through LOV-J alpha for light-driven allosteric regulation. This study provides insight into the energetics of light sensing by phototropins and benchmark values for engineering photoswitchable systems based on the LOV-J alpha interaction.
Submit a new publication to our database